
Deep Learning
for Computer Vision

Tassadaq Hussain
Professor Namal University

Director Centre for AI and Big Data

Collaborations:
Barcelona Supercomputing Center Barcelona, Spain

European Network on High Performance and Embedded Architecture and Compilation
Pakistan Supercomputing Center

from tensorflow import keras

from tensorflow.keras import layers

inputs = keras.Input(shape=(28, 28, 1))

x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(inputs)

x = layers.MaxPooling2D(pool_size=2)(x)

x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)

x = layers.MaxPooling2D(pool_size=2)(x)

x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)

x = layers.Flatten()(x)

outputs = layers.Dense(10, activation="softmax")(x)

model = keras.Model(inputs=inputs, outputs=outputs)

Convolution operation

CNN?
● Computer vision is evolving rapidly day-by-day. Its

one of the reason is deep learning. When we talk
about computer vision, a term convolutional
neural network(abbreviated as CNN) comes in
our mind because CNN is heavily used here.
Examples of CNN in computer vision are face
recognition, image classification etc. It is similar to
the basic neural network. CNN also have
learnable parameter like neural network i.e,
weights, biases etc.

Why CNN
● Suppose image is 1000 x 1000 which means you need 10⁶

neurons in input layer. It is computationally ineffective right.
● CNN extract the feature of image and convert it into lower

dimension without loosing its characteristics.

Edge Detection

The convolution operation
● The fundamental difference between a

densely connected layer and a convolution
layer is this:

● Dense layers learn global patterns in their
input feature space

● Convolution layers learn local patterns in
the case of images, patterns found in small
2D windows of the inputs.

 CONVOLUTION STRIDES
● The other factor that can influence output size is the

notion of strides.
● It has been assumed that the center tiles of the

convolution windows are all contiguous. But the distance
between two successive windows is a parameter of the
convolution, called its stride, which defaults to 1.

Activation Layer (ReLU):

After each convolutional operation, a non-
linear activation function, often ReLU
(Rectified Linear Unit), is applied element-
wise to introduce non-linearity into the
model. ReLU helps in capturing complex
patterns and relationships within the data.

 The max-pooling operation
● Pooling layers (e.g., MaxPooling or AveragePooling) are

used to downsample the spatial dimensions of the feature
maps generated by the convolutional layers. This
reduces the computational load and helps in creating a
more abstract representation of the input data.

Fully Connected Layer (Dense Layer):

Fully connected layers connect every neuron in one layer to
every neuron in the next layer. They are typically placed
towards the end of the CNN and are responsible for making
predictions based on the high-level features extracted by
the earlier layers.

Flattening Layer:

Before passing the output of the
convolutional and pooling layers to the fully
connected layers, a flattening layer is often
used to convert the 2D matrix data into a
vector. This step prepares the data for
input into the fully connected layers.

Output Layer:

The output layer produces the final
predictions or classifications. The number
of neurons in this layer corresponds to the
number of classes in a classification task,
and the activation function is often softmax
for multi-class classification.

from tensorflow import keras
from tensorflow.keras import layers
inputs = keras.Input(shape=(180, 180, 3))
x = layers.Rescaling(1./255)(inputs)
x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=256, kernel_size=3, activation="relu")(x)
x = layers.MaxPooling2D(pool_size=2)(x)
x = layers.Conv2D(filters=256, kernel_size=3, activation="relu")(x)
x = layers.Flatten()(x)
outputs = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(inputs=inputs, outputs=outputs)

import os, shutil, pathlib
original_dir = pathlib.Path("train")
new_base_dir = pathlib.Path("cats_vs_dogs_small")
def make_subset(subset_name, start_index, end_index):
for category in ("cat", "dog"):
dir = new_base_dir / subset_name / category
os.makedirs(dir)
fnames = [f"{category}.{i}.jpg"
for i in range(start_index, end_index)]
for fname in fnames:
shutil.copyfile(src=original_dir / fname,
dst=dir / fname)
make_subset("train", start_index=0, end_index=1000)
make_subset("validation", start_index=1000, end_index=1500)
make_subset("test", start_index=1500, end_index=2500)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

